New era for observing and understanding atmospheric moist processes

Graeme Stephens

- •CloudSat successfully launched April 28, 2006
- Operationally collected data since June, 2 (>98% all data since has been processed)
- Products released at end of January
- 2year funded mission, seeking an extension for further 3 years

CloudSat Mission science goals

- •Measure vertical structure of clouds, quantify their ice and water contents as a step toward improved weather prediction and
- understanding of clin Products

How do structure What

- What is the
- Quantify the relation
 Cloud type heating by clouds

Do clouds heat Do the radiative

- Evaluate cloud infor satellites
- •Improve our underst precipitation

- What are the fuel Geometrical profiles = Radar profiles =Hydrometeor profiles
 - Cloud incidence
 - •Cloud physics = water content profiles
 - Cloud contribution to atmospheric radiative
 - heating derived from geometric
 - profiles, cloud physics, T,q analysis
 - Precipitation incidence
 - Quantitative precipitation

To what extent are the properties above (water, ice, precipitation, vertical structure) influenced by aerosol?

CloudSat Data Processing Center (DPC)

http://www.cloudsat.cira.colostate.edu

Example of cloud structure statistics (JJA)

- 2B geoprof

TWP

S. Ocean

 $\sigma = 4.13$

 σ =2.25

0.1

0.2

0.1

-10

Mace et al, 2007

Composite vertical profile for west pac, JJA

Minimum cloud top heights distributions

Of note:

- •Trimodality (quadra-modal) heights
- precipitating clouds are deeper than non precipitating clouds

Revealing the trimodality of tropical precipitation

Frequency of Occurrence of Clouds and Precipitation

Cloud Ice water content (2B-CWC) - modelers last line of defense against measured TOA fluxes¹

Cloud 'Impact' on Radiative heating of atmosphere 2b-fluxhr product

Preliminary, one month of data

Clouds over global land areas radiatively cool Clouds over global oceans radiatively heat ?????

CloudSat simulator activity

- CloudSat simulator (Quickbeam)
 - Emulates observations (in the spirit of ISCCP simulator)
 - Requires Cloud and Precipitation as input
 - Has been integrated into certain versions of global models
 - Being adapted to more 'conventional' low-resolution models.

Haynes et al., 2007

July

December

Summary

We are gathering new important insights on moist processes - such as insights on

- global precipitation efficiency,
- cloud structures in relation to storm types
- warm-rain auto-conversion
- influence of clouds on atmospheric and surface energetics

While comparison with models is revealing, we are keen to see the knowledge gained being converted to quantitative-process centric metrics as defined by these new observations.

Preliminary steps toward the CloudSat radar/lidar geoprof

Preliminary example for portion of an orbit

Courtesy Jay Mace

A case study example of comparison between CloudSat and AMSRE -

passive microwave methods are missing significant fractions of light precipitation

Using matched CloudSat radar, MODIS data

Stephens and Haynes, 2007